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Abstract

Both costs and benefits must be considered when implementing marine protected areas

(MPAs), particularly those associated with fishing effort displaced by potential closures. The

Southern Ocean offers a case study in understanding such tradeoffs, where MPAs are

actively being discussed to achieve a range of protection and sustainable use objectives.

Here, we evaluated the possible impacts of two MPA scenarios on the Antarctic krill

(Euphausia superba) fishery and krill-dependent predators in the Scotia Sea, explicitly

addressing the displacement of fishing from closed areas. For both scenarios, we employed

a minimally realistic, spatially explicit ecosystem model and considered three alternative

redistributions of displaced fishing. We projected both MPAs to provide positive outcomes

for many krill-dependent predators, especially when closed areas included at least 50–75%

of their foraging distributions. Further, differences between the scenarios suggest ways to

improve seal and penguin protection in the Scotia Sea. MPA scenarios also projected

increases in total fishery yields, but alongside risks of fishing in areas where relatively low

krill densities could cause the fishery to suspend operations. The three alternatives for redis-

tributing displaced fishing had little effect on benefits to predators, but did matter for the fish-

ery, with greater differences in overall catch and risk of fishing in areas of low krill density

when displaced fishing was redistributed evenly among the open areas. Collectively, results

suggest a well-designed MPA in the Scotia Sea may protect krill-dependent predators, even

with displaced fishing, and preclude further spatial management of the krill fishery outside

the MPA. More broadly, outcomes denote the importance of delineating fishing and predator

habitat, spatial scales, and the critical trade-offs inherent in MPA development.

Introduction

Globally, fisheries managers and the scientific community increasingly recognize the value of

shifting towards an ecosystem approach to fisheries management, with some advocating that
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marine protected areas (MPAs) be used to facilitate such a transition (e.g., [1]). MPAs can be

useful, even essential, for reversing various anthropogenic impacts on marine resources and

ecosystems (e.g., [2–6]). Protected areas may buffer against uncertainty [1, 7, 8]; enhance habi-

tat protection, biodiversity, and population conservation (e.g. [9–11]); and increase the bio-

mass, density, body size, and age distribution of species (e.g., [5, 6, 12–14]). MPAs may also

boost fishery yields (e.g., [5, 11, 15–17]) and amplify the benefits of non-consumptive ecosys-

tem services [18].

Despite these their advantages, MPAs can also present significant challenges. There may be

social and economic consequences when MPAs deny stakeholders access to valuable, formerly

available resources (e.g., [19–25]). Unanticipated ecological risks may also result from the

establishment of an MPA, with redistributed human usage being a significant driver of such

risks. For example, once displaced from MPAs, fishing effort may become more concentrated

elsewhere, with consequent negative effects on commercially targeted and untargeted stocks,

recovering and protected species, and habitats (e.g., [19, 26–29]). Collectively, adverse out-

comes can undermine stakeholder buy-in and prevent an MPA from realizing desired policy

and management objectives. Therefore, previous researchers have urged that MPA planners

explicitly consider potential fishery outcomes, including fishing-effort displacement (e.g., [21,

22, 25]).

Ecosystem models can facilitate and improve MPA design [4, 30], particularly if human

activities are represented as part of the ecosystem [18, 19] and the potential outcomes of fishery

displacement are projected [30]. By comparing results with and without protected areas, eco-

system models can illuminate broad system implications that highlight benefits, drawbacks,

and unanticipated outcomes [30]. It is critical such assessments include the social and eco-

nomic effects of a projected MPA, and its impacts on the people whose activities will be

affected. In particular, fishing-effort displacement may alter modeled outcomes [30, 31], but

such effects are often overlooked or under-assessed [22, 23, 32, 33].

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR or

the Commission) is working to establish a network of MPAs in the Southern Ocean. CCAMLR

is a pioneer in applying an ecosystem approach to marine conservation [34, 35], and spatial

management is a core tenant of the convention establishing its management competency and

authority. Recognizing that protected areas are useful for achieving its management objectives,

the Commission established two MPAs: the South Orkney Islands Southern Shelf MPA and

the Ross Sea region MPA [36]. Additional protected areas are under development in East Ant-

arctica, the Weddell Sea, and a region including the Antarctic Peninsula and southern Scotia

Sea (known as “Planning Domain 1”) [37].

CCAMLR considers both ecosystem and fishery needs when developing MPAs. Antarctic

krill, Euphausia superba (hereafter krill), are a key forage species for numerous predators

around the Antarctic Peninsula and in the southern Scotia Sea, including penguins, seals,

whales, and fishes. An international krill fishery also operates in this region, and its spatio-tem-

poral activity overlaps with that of the foraging predators [38, 39]. Since some predator popula-

tions may be sensitive to changes in krill availability [40–42], they may be vulnerable to risks

from elevated competition for this common resource when and where fishing and foraging

predators coincide [e.g. 43]. Given that such risks can be managed by redistributing fishery

catches to reduce competition [44, 45], the Commission defined a set of “small-scale manage-

ment units” (SSMUs, [46]) within statistical Subareas 48.1, 48.2, and 48.3 to facilitate the distri-

bution of catches throughout the Scotia Sea. However, SSMU-specific catch limits have yet to

be adopted. Establishing an MPA in Planning Domain 1 might augment CCAMLR’s manage-

ment strategy in the Antarctic Peninsula and southern Scotia Sea region, if the socio-ecological

risks and costs associated with displaced fishing can be evaluated and minimized.
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To assess risks to this complex human and natural system, we evaluated and compared two

MPA scenarios in Planning Domain 1. We focused on both the conservation of krill-depen-

dent predators and the performance of the international krill fishery, and examined how sce-

nario outcomes could be altered by different redistributions of the fishing effort displaced by

an MPA. For this work, we employed an established ecosystem model that has been used to

assess trade-offs between ecological conservation and human use. This model is dynamic, spa-

tially-explicit, and minimally realistic (sensu [47]), although it does not include fleet dynamics

and assumes both foraging and fishing are based on recent patterns from current data. Our

objective was to profile the benefits and costs inherent in implementing an MPA within Plan-

ning Domain 1, and to provide insight to facilitate decision-making. In particular, we were

interested in whether MPA design could effectively delineate predator and fishing distribu-

tions in a way that would benefit predator populations and also optimize outcomes for people.

The value and aim of this work is not to provide specific predictions, but to better understand

trade-offs relevant to protected areas in the Southern Ocean–thus it also supplies a case study

for similar spatial management elsewhere.

Methods

The ecosystem model

To project the consequences of each MPA scenario, we used a spatially explicit model of the

Scotia Sea ecosystem written in the R language [48] and described by Watters et al. [45]. Hill

and Matthews [49] provided sensitivity analysis, and much of the data used was vetted by

CCAMLR and peer review [50]. This model is minimally realistic as opposed to representing

as much of the system as possible––a “model of intermediate complexity for ecosystem assess-

ments” (MICE, [47]) detailing a specific subset of a coupled system to explore trade-offs

between krill-dependent predators and the krill fishery. To this end, the model focuses on krill,

krill-dependent predators (multi-species groups of whales, penguins, seals, or fishes), and the

fishery for krill. It includes two time-steps (seasons) per year, and spatially represents three

subareas in the Scotia Sea divided into 15 coastal and offshore SSMUs. Twelve of the SSMUs

in two of the subareas occur within Planning Domain 1 and include a potential MPA (Fig 1).

For the model ecosystem, krill-dependent predators breed in one SSMU and forage across

wider areas composed of multiple SSMUs, with these foraging distributions informed by

recent tracking data. Delay-difference equations describe the dynamics of each predator group

and krill, and the post-larval biomass of krill in each SSMU is a function of stochastic recruit-

ment and area-specific mortality and movement. Available krill biomass is estimated at the

beginning of each time step, and competition arises when this biomass is insufficient to satisfy

the combined demand of predators and the fishery. Four “reference parameterizations” facili-

tate the consideration of key uncertainties by bracketing plausible rates of krill movement

between SSMUs (no movement and movement as passive drifters), and relationships between

krill biomass and the effective numbers of breeding predators (hyperstable and linear) [45].

Our ecosystem model simulates management strategies that limit the overall catch taken by

the krill fishery, both in space and seasonally. Currently, the catch limit for the krill fishery is

set much lower than the total precautionary catch limit, and this will continue until such time

as CCAMLR implements a spatial management strategy that successfully mitigates risks to

krill predators [51]. Therefore, in theory, an effective approach to spatial management would

allow CCAMLR to increase allowable catches from the current level to the total precautionary

limit. As we are modeling MPAs as a potential spatial management approach, we chose to

assume their implementation–especially given they prohibit fishing in some areas–would also

see the fishery allowed to develop towards the total limit. We then used that total limit in our
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model instead of arbitrarily choosing a lower one. Therefore, the catch limit realized in the

model is the product of (1) the initial krill biomass across the model arena and (2) the harvest

rate used to set the overall catch limit for krill in this region (0.093). The spatio-temporal distri-

bution of catches in the ecosystem model was determined by recent (2009–2017) fishing data

([52] and see [45]). Catches currently taken within the closed areas and thus displaced by the

two MPA scenarios were redistributed to areas that remained open to fishing using three alter-

native redistributions of catch, explained as follows.

Implementation of the marine protected areas

Here, we aim to provide feedback on a formally proposed MPA. Therefore, the first of the two

MPA scenarios we considered represents the initial, formal MPA proposal submitted to

CCAMLR by the delegations of Argentina and Chile in 2017 [53, 54 and discussed in 37 and

55] and referred to as the Domain 1 MPA, or “D1MPA” [55] (Fig 1). The second scenario

derives from an assessment of spatial protection priorities held by a small group of U.S. stake-

holders from government, academia, non-governmental organizations, and the tourism and

fishing industries ([56], hereafter “US10”; Fig 1). The US10 scenario was presented to

CCAMLR Members to catalyze thinking about spatial protection within Planning Domain 1

and inform them of some U.S. priorities for spatial protection. The US10 scenario is not a for-

mal proposal, but, given its basis, we compared it with the D1MPA scenario to obtain

Fig 1. Spatial structure of the ecosystem model (A) and the two MPA scenarios (B-C). The ecosystem model arena (A) is comprised of 15 SSMUs

(labeled in black) within three Subareas (labeled in grey) (Subarea 48.1 includes eight SSMUs, Subarea 48.2. four SSMUs, and Subarea 48.3 three

SSMUs). The modeled MPA scenarios are simplified representations of (B) the initial MPA proposed to CCAMLR by the Delegations of Argentina

and Chile (the D1MPA scenario) in 2017 [54], and (C) a scenario based on U.S. stakeholders’ spatial protection priorities (the US10 scenario). In

(B-C), closed areas specific to each scenario are shaded in darker blue, and the existing South Orkney Islands Southern Shelf MPA is in lighter blue.

https://doi.org/10.1371/journal.pone.0237425.g001
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information useful for improving the D1MPA, and we are not aware of other MPA scenarios

designed to satisfy stakeholders in this region. Both modeled scenarios included the existing

South Orkney Islands Southern Shelf MPA [57]. For simplicity, all areas within the boundaries

of each MPA scenario were treated as “no-take” areas closed to fishing; conversely, areas out-

side these boundaries were considered open to fishing in our model. We note that the two

MPAs are largely confined to the SSMUs along the coast; neither scenario includes substantive

protection in pelagic, off-shore SSMUs beyond that included in the South Orkney Islands

Southern Shelf MPA.

There is no protected area in the northern Scotia Sea (Subarea 48.3) in either scenario, as

this lies outside Planning Domain 1 (i.e., Planning Domain 1 only includes Subareas 48.1 and

48.2). Subarea 48.3 is within the spatial arena of our ecosystem model (i.e., the model arena

encompasses Subareas 48.1–48.3), as the fishery and predators utilize the entire area. There-

fore, our model also provides an opportunity to test outcomes of an MPA in areas that are cur-

rently outside management units within the MPA, but are connected to such closed areas by

the movement of krill, displaced fishing, and predator foraging.

MPAs may be most effective where they protect predator habitat, and we used available

telemetry data to determine the areas where predator groups foraged in the model (except for

fish, for which we had no telemetry data) (as in [38]). For this, a state-space model [58] was fit-

ted to available telemetry data to account for uncertainty and estimate the proportion of time

predators spent inside or outside the closed areas defined by each MPA scenario (see S1 File

for details). We considered these proportions representative of the amount of krill a predator

demands from inside an MPA (“foraging percentage”, Table 1) and compared this with mod-

eled outcomes to determine if predator foraging inside an MPA–and therefore effectively

delineated from possible competition with fishing–coincided with possible ecological benefits.

Because both MPA scenarios were developed independent from SSMUs, which have not

been implemented by CCAMLR, they cut across SSMU boundaries. However, the model is

parameterized based on SSMUs. This difference necessitated splitting each modeled SSMU

into two parts, one part inside the MPA and another outside of it, and then revising the spatial

parameterizations of the ecosystem model. To do this, we developed additional R code [48] to

split the state variables and parameters of the original, SSMU-specific reference parameteriza-

tions. The first step in this process was to superimpose the D1MPA and US10 scenarios on

maps of the SSMUs (i.e. those in Fig 1). Using the MPA boundaries, we defined two areas

within each SSMU, one inside (closed to fishing) and one outside the MPA (open to fishing).

We then decomposed spatially-dependent SSMU model parameters to obtain the reference

parameterizations for the open and closed areas. These include: initial abundances of krill in

each SSMU, maximum krill recruitments to each SSMU, instantaneous rates of krill move-

ment between SSMUs, recent krill catches taken from each SSMU, and proportional distribu-

tions of predator foraging effort among SSMUs. Non-spatial parameters remained the same

(see S1 File for a full list of parameters and their decomposed values). This process did not

alter the primary structure or application (spatially explicit, ecosystem-based risk assessment)

of our model, nor did basic decomposition alter basic model dynamics (S1 File).

Decomposing the parameters allowed us to evaluate the MPA scenarios, and established a

hierarchy of four spatial scales to organize model results and redistribute displaced catches.

From largest to smallest, the spatial scales considered here are (1) the full model arena com-

prising all three subareas considered in the model, (2) the subareas themselves (48.1, 48.2,

48.3), (3) the individual SSMUs, and (4) the open and closed areas in each SSMU created by

implementing the MPA scenarios. However, the only scales of use in management are subar-

eas, and the closed and open areas of the D1MPA are only the potentially implemented out-

comes. Thus, the point of varying scale here is less about management in reality and more
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about exploring if outcomes change across spatial scales, which we have found to be significant

in previous work [42].

Redistribution of displaced catches

To explore how displaced catches might affect krill predators and the fishery in each MPA

scenario, we maintained the overall catch limit and considered three alternatives for redistrib-

uting fisheries displaced from the closed areas. We estimated the catch displaced by the MPA

closure using the overall catch limit and the average proportional distribution of catches dur-

ing the 2009–2017 fishing seasons (see S1 File). For example, if the overall catch limit for an

SSMU is 100 t and the fishery in that SSMU had taken 20% of its catch within the projected

closed area, as defined by the scenario, up to 20 t of displaced catch was redistributed outside

the MPA. The model sums catches displaced from all closed areas, then allocates the displaced

catches across open areas at varying spatial scales. These three “redistribution alternatives"

sum and then reallocate catches (1) across the statistical subarea in which catches originated

Table 1. SSMU-specific, seasonal percentages of the total krill a predator group demands for that season (i.e. foraging percentages) from areas closed to fishing in

each of the two MPA scenarios.

SSMU Penguins Seals Whales Fish

Summer Winter Summer Winter Summer Winter Summer Winter
D1MPA

1 56.9% 36.8% 3.4% 3.4%

2 86.6% 55.7% 30.7% 30.7%

3 95.7% 35.9% 53.6% 8.5% 50.3% 50.3%

4 95.0% 27.8% 53.6% 8.5% 33.5% 33.5%

5 95.0% 28.7% 64.7% 64.7%

6 85.3% 53.6% 42.0% 42.0%

7 94.9% 27.0% 53.6% 8.5% 35.0% 35.0%

8 76.7% 59.3% 17.0% 17.0%

9 5.5% 0.0% 11.5% 11.5%

10 94.8% 8.0% 11.0% 11.0%

11 77.0% 3.3% 31.6% 31.6%

12 90.3% 7.3% 28.8% 28.8%

US10

1 82.4% 56.7% 14.3% 14.3%

2 28.0% 46.1% 60.7% 60.7%

3 49.4% 31.5% 65.5% 10.9% 43.9% 43.9%

4 49.3% 22.9% 65.5% 10.9% 59.1% 59.1%

5 49.3% 23.9% 75.3% 75.3%

6 25.7% 43.2% 22.4% 22.4%

7 0.0% 22.0% 0.0% 10.9% 0.0% 0.0%

8 7.7% 42.7% 0.8% 0.8%

9 50.0% 0.0% 11.5% 11.5%

10 0.0% 9.4% 0.0% 0.0%

11 0.0% 0.1% 0.0% 0.0%

12 0.0% 7.3% 0.0% 0.0%

Summer is October through March in the model, and winter is April through September. Foraging percentages are reported for the SSMU in which the predator groups

recruit in the model, but predators forage in multiple SSMUs across the model arena. Foraging percentages >50% are shaded blue (darker blue at >75%); those <25%

are in red. Empty (white) cells denote that predator group is not modeled to recruit in that SSMU.

https://doi.org/10.1371/journal.pone.0237425.t001
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(“Regional” redistribution alternative), (2) from the closed to the open areas of the SSMU in

which the catches originated (“Local” alternative), or (3) across all open areas in the model

arena in proportion to the average 2009–2017 catch distribution (“Current” alternative). Then

we allocated these redistributions seasonally based on the seasonal distribution of recent

catches (2009–2017 [52]). We note that redistributing catches based on average catch distribu-

tions recorded during 2009–2017 is probably inadequate for characterizing recent patterns in

the fishery, which currently focuses on Subarea 48.2 during early summer, switches to Subarea

48.1 in late summer and early winter, and moves to Subareas 48.2 and 48.3 after the catch limit

in Subarea 48.1 is achieved, but chose to rely on the published fishery data.

We based our redistribution alternatives on existing literature describing the behavior of

fisheries following the establishment of closed areas. The Local alternative is akin to “fishing

the line” (e.g., [24, 59, 60]), where vessels fish as close as possible to the boundaries of closed

areas from which the displaced catches originated. The Current alternative assumes that fishers

prefer recent fishing locations, perhaps over areas proximal to the closed areas (e.g., [61–63]),

and wherein fishing vessels self-sort and redistribute to areas with the highest expected catch

(e.g., [64, 65]). In contrast, the Regional alternative reflects additional regulation that redistrib-

utes fishing activities across open areas to minimize the ecosystem risks posed by unintended

concentration of displaced catches [23, 63].

Model implementation

We ran 1001 Monte Carlo trials (with random variations in krill recruitment) for each of the six

combinations of MPA scenario, reference parameterization, and alternative redistribution of dis-

placed catches. We also projected a “counterfactual” scenario [30], i.e. a “No MPA” reference sce-

nario in which fishing was not displaced from the “closed” portion of an SSMU. All scenarios

were initiated by conditioning on ecosystem dynamics from 1970–2007 [45], and the resulting

estimated model abundances were then decomposed into portions inside and outside the MPAs.

We then simulated a period of thirty years, with two seasons (summer and winter) per year, and

averaged results across the parameterizations as in Watters et al. [45] and Klein et al. [42].

We computed total predator abundances within each SSMU in the last year of each simula-

tion, focusing on penguins and seals to ensure results were manageable in the main text and as

example species groups as these critical land-based predators have the potential for competi-

tion with the krill fishery (e.g. [38]). We also calculated two fishery-performance metrics. The

first was total catch during the last year of each simulation. However, total catch may not fully

capture important consequences for a fishery, i.e. the MPA may displace the fishery into open

areas where krill are more difficult to catch (as noted in Hill et al. [66]). Therefore, our second

fishery metric quantified the probability that the fishery would find itself in areas of low krill

density during the model simulation. Like Watters et al. [45], we set a threshold for this density

as 15 g�m-2, and tallied how often season-specific krill densities fell below this threshold in

areas open to fishing, which we termed “threshold violations”. We computed the average num-

ber of threshold violations per model run across the 1001 trials, and then the probability of

such violations by dividing this average by the total number of seasons during the 30-year trial

(i.e., 60 seasons).

The relevant code and model inputs are available online via https://github.com/

EmilyKlein/KPFM2 and https://github.com/EmilyKlein/KPFM2_MPA_FBM.

Results

Results were sensitive to the analytical spatial scale. At the scale of the entire model arena, we

did not find major impacts on predator abundance in either of the MPA scenarios tested (Fig
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2). Across redistribution alternatives, the model projected slight increases in total penguin

(+9–10%) and whale (+4–6%) abundances under the D1MPA scenario, and larger increases

with whales (+16%) under the US10 scenario. However, US10 showed a slight decline for pen-

guins (-3%) under the Regional alternative, and seals declined in both MPAs under the Cur-

rent alternative (-5%). All other combinations of MPA scenario and redistribution alternative

indicated no change in abundance aggregated at the model arena scale, and the fish group was

generally unaffected.

At the scale of the model arena, the krill fishery experienced relatively greater effects (Fig 3).

Under the Regional alternative, both MPA scenarios yielded larger catches (+28% for D1MPA,

+16% for US10). Catches under the Local or Current alternatives increased only slightly for

the D1MPA (+2 and +4%, respectively) and declined for US10 (-7% and -5%). The probability

of threshold violations (fishing in areas of low krill density) increased for both MPA scenarios

Fig 2. Relative changes, at the scale of the model arena, in overall predator abundance by species group and

redistribution alternative given two MPA scenarios. Percent change in overall predator abundance by species group

(penguins in yellow, seals in teal, whales in lavender, and fish in blue) during the final year of the model run for the (A)

D1MPA and (B) US10 scenarios relative to the No MPA reference. The Regional redistribution alternative is the first

set of bars, followed by the Local and Current alternatives. The dashed horizontal line at 1.0 indicates no change in

modeled results between the MPA scenario and the No MPA reference. Bars above the line indicate increased

abundance with the MPA, and bars below the line indicate population declines. Percent changes are labeled at the top

of each bar, and error bars represent the standard deviation from the mean across all simulations in a scenario,

capturing the variability across the four parameterizations.

https://doi.org/10.1371/journal.pone.0237425.g002
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and all three redistribution alternatives. Under the Local and Current alternatives this proba-

bility increased 13% to 15% in both MPA scenarios, whereas under the Regional alternative

the probability increased even more: +26% for D1MPA and +21% for US10.

As in Klein et al. [42], results aggregated across the model arena masked greater differences

at smaller spatial scales of analysis (Figs 4–6). At the SSMU scale, the important takeaways are

overall patterns of model projections, and, to keep figures in the main text manageable, we

report results here for the penguin and seal groups, land-based predators most likely to overlap

with the krill fishery (e.g. [38]). Results for whales and fish are provided in S1 File. For pen-

guins, the D1MPA scenario yielded increasing populations in a greater number of SSMUs,

with only a few minor local declines (Fig 4). Like the outcomes at the model-arena scale (Fig

2), penguin responses to the D1MPA were similar across the three redistribution alternatives

at the SSMU scale, while the US10 scenario showed a wider range of responses. For seals, how-

ever, outcomes at the SSMU scale revealed more substantial differences both by MPA and

redistribution alternative (Fig 5), although there was little change in the abundances of seals in

both MPA scenarios at the scale of the model arena (Fig 2). Outcomes also differed across

MPA scenario and redistribution alternative for fishes, and whales experienced slight increases

or little change in the SSMUs where they were modeled (S1 File).

Spatial patterns also emerged in terms of fishery catches (Fig 6). Overall, outcomes at the

SSMU-scale were somewhat more dependent on redistribution alternative than on MPA sce-

nario. The fishery saw a range of catch increases, with few declines. The strongest decline in

Fig 3. Relative total catches and probabilities of a threshold violation, at the scale of the model arena, across all

redistribution alternatives in both MPA scenarios. Relative total krill catch in the final year of the model run (top

bars) and the average probability of a threshold violation (bottom bars) by redistribution alternative for each MPA

scenario (D1MPA in blue, US10 in green) relative to the No MPA reference. All other details as in Fig 2.

https://doi.org/10.1371/journal.pone.0237425.g003

PLOS ONE Marine protected areas and displaced fishing in the Scotia Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0237425 August 12, 2020 9 / 24

https://doi.org/10.1371/journal.pone.0237425.g003
https://doi.org/10.1371/journal.pone.0237425


catch consistently appeared in the southwestern Bransfield Strait (SSMU 5). As overall patterns

showed increased catches in the other SSMUs, declines in SSMU 5 may have been a strong

driver of arena-wide catch declines (Fig 3). This is due in part to the reallocation of catch dis-

placed by either MPA from this SSMU, but changes in catch were not entirely explained by dif-

ferences between the MPA scenarios and the No MPA reference (see S1 File). Finally, we note

threshold violations were more likely for many SSMUs in both MPA scenarios, in agreement

with results at the scale of the model arena (Fig 3), although threshold violations within the

pelagic SSMUs––those with some of the highest potential for low krill densities––were similar

between the two MPA scenarios (S1 File).

We also considered whether increases in predator abundance coincided with greater forag-

ing in areas closed to fishing within MPAs, and if this could help explain our results. That is,

we asked whether predator populations increase more often when locations where predators

Fig 4. Outcomes for penguins by SSMU in both MPA scenarios. Changes in penguin abundance with an MPA

relative to the No MPA reference (i.e. MPA/No MPA), with the top row (A and B) the Regional redistribution of

displaced catches, the middle row (C, D) the Local alternative, and bottom row (E, F) the Current alternative. The left

column illustrates results from the D1MPA scenario (A, C, E) and the right from US10 (B, D, F). Grey indicates areas

where the species group is not modeled to recruit. Note that changes are relative to the no MPA scenario within each

SSMU, not to overall change.

https://doi.org/10.1371/journal.pone.0237425.g004
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forage are closed to the krill fishery. To answer this question, we compared the percentage of

predator foraging that occurred within closed areas in each MPA (Table 1) to the changes in

relative abundance of predator populations (i.e., abundance in the final year of the MPA sce-

nario relative to abundance in the final year of the No MPA reference). Generally, our results

showed that abundance of all predator groups was likely to be higher when foraging occurred

inside an MPA during the summer breeding season (Fig 7; we did not report patterns for the

winter season as many predators depart to forage outside the model arena [45]). For most of

the groups, differences between the MPA scenarios depended upon which scenario protected

the largest foraging area. For penguins, the D1MPA (circles in Fig 7) saw greater increases

than US10 (triangles in Fig 7) since it protected a greater proportion of the birds’ foraging

areas. The opposite was true for seals and whales, whose foraging distributions were more pro-

tected foraging under US10 than the D1MPA. For seals, a small increase in foraging protection

in US10 over the D1MPA in some SSMUs (Table 1) still returned a greater seal abundance. In

contrast, while relative fish abundance also increased with an increase in protected foraging

areas, no difference appeared between the two MPA scenarios. Notably, many increases in

Fig 5. Outcomes for seals by SSMU in both MPA scenarios. Change in seal abundance with the MPA relative to the

No MPA scenario (i.e. MPA/No MPA); all other details as in Fig 4.

https://doi.org/10.1371/journal.pone.0237425.g005
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predator abundance were unaffected by how fishing displaced by the MPA was redistributed

(as indicated by points of different colors fully overlapping one another in Fig 7).

Results further denote little connection between the amount of krill caught and relative

changes in predator abundance (Fig 7). We find no discernable relationship between symbol

sizes in Fig 7, indicating the amount of krill caught in the open area within each SSMU, and

the abundance of predators. These results also show: (1) large catch quantities only affected

outcomes for predators if the krill were caught in areas where they forage, and (2) an MPA

that effectively promoted increases in predator populations often did so alongside high krill

catches outside protected areas.

Importantly, our results also revealed some declines in predator populations with an MPA

in place (Figs 2, 4, 5 and 7). This counterintuitive finding suggests that displaced fishing may

indeed increase risks for krill-dependent predators, but such declines more likely occur where

an MPA does not sufficiently encompass the foraging habitat of predators (points below the

y = 1 line in Fig 7). Indeed, as long as>50% of predator foraging areas occurred within closed

areas, we found most predators did not decline in abundance. As the percentage of foraging

habitat rose to and beyond 75%, all four predator groups approached their greatest abundance.

Fig 6. Outcomes for the fishery by SSMU in both MPA scenarios. Change in catch with the MPA relative to the No

MPA scenario (i.e. MPA/No MPA); all details as in Fig 4.

https://doi.org/10.1371/journal.pone.0237425.g006
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Discussion

Why design an MPA that maximizes ecosystem benefits without considering social costs? This

rhetorical question highlights the fallacy of assuming one simply needs to close most areas

where predators and a fishery compete for a common resource. A challenging but more realis-

tic task is to design an MPA that simultaneously manages human costs and ecosystem risks,

such as from the potential adverse effects of displaced fishing. In our case in the Scotia Sea and

Antarctic Peninsula, these costs and risks revolve around a fishery and predator populations

all dependent on the same forage species, krill. These findings also advance evaluation meth-

ods for MPAs in general; profiling “bad” outcomes provides knowledge useful in developing

“better” MPAs.

Insight for MPA development in the Scotia Sea

Improving outcomes for the D1MPA. Our results hold particular insight for improving

the D1MPA. Several authors have discussed the various tradeoffs inherent in krill-fishery man-

agement and for predators in the Antarctic (e.g., [43–45, 67]). These discussions relate to the

spatial distribution of fishing, and tradeoffs typically contrast maintaining robust or resilient

populations of krill-dependent predators with increasing potential krill-fishery yields. Because

Fig 7. Relative abundances of species groups by SSMU given percentages of foraging inside an MPA. Relationship between the percent of foraging

during summer (the breeding season) that occurs inside an MPA (x-axis) and change in abundance of each species group (penguins, seals, whales, and

fish) relative to the No MPA reference (MPA/No MPA, y-axis). Each point represents an SSMU: circles are the D1MPA scenario and triangles US10.

Colors denote redistribution alternative (Regional is purple, Local orange, and Current green). The dashed line at y = 1.0 indicates where there is no

change in abundance with an MPA. Relative sizes of the points indicate the amount of catch in that SSMU; note many points overlap, indicating no

difference across the redistribution alternatives for catches displaced by an MPA.

https://doi.org/10.1371/journal.pone.0237425.g007
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discussions about MPAs in Planning Domain 1 fit squarely in this setting, our projections of

the potential ecological and social benefits and costs of implementing protected areas with dif-

ferent patterns of fishing displacement aim to advance CCAMLR’s work on MPAs.

Comparing results from the D1MPA and US10 scenarios is also useful for revising the

D1MPA proposal [53, 54] to increase benefits while considering costs for the fishery, the eco-

system, and the potential consequences of fishing displaced by protected areas. Active debate

on the D1MPA proposal includes dialogue on closed areas delimited by a 30-km buffer around

the Antarctic Peninsula, South Shetland Islands, and South Orkney Islands coastlines (Fig 1B)

[53]. This buffer is particularly relevant to the protection of Antarctic fur seals (Arctocephalus
gazella) and three penguin species, which must provision their offspring in breeding colonies

on land, and are central place foragers during the austral summer. Given its origins for denot-

ing priorities among U.S. stakeholders [56], inclusion of the US10 scenario can help consider

additional stakeholder aspirations, and, as it provides further information, may aid in achiev-

ing consensus for an MPA in Domain 1, which is currently lacking [37].

Our results indicate that, within the D1MPA scenario we modeled, a 30-km buffer may fail

to mitigate the risk of depleting Antarctic fur seals due to displaced fishing. Our model find-

ings projected fur seals to fare better under the US10 scenario, likely because it encompassed

more seal habitat in the southern Drake Passage than the D1MPA scenario (SSMUs 3 and 4).

About 70–80% of Antarctic fur seal pups in the South Shetland Islands are born in SSMU 3

(M. Goebel, personal communication), and fur seals breeding in SSMU 3 spend significant

amounts of time in waters where the bottom depth is shallower than 2000 m (see Fig 7 in

[38]). The 2000-m isobath is about 40–60 km from the coastline in SSMU 3, so extending the

buffer to 60 km may reduce the risks that D1MPA will exacerbate seal depletion.

Earlier work has shown the importance of more actively managing displaced fishing to off-

set detrimental economic and ecological impacts (e.g. [18, 27, 62]). Watters et al. [45] have

argued the importance of spatially redistributing harvesting effort, in particular shifting

catches offshore from coastal SSMUs to mitigate the ecosystem risks posed by krill fishing, but

our conclusions with different MPA scenarios were less straightforward. We found that, if

predator foraging is protected by an MPA, changes in population abundance can be insensitive

to the redistribution of displaced catches, whether to neighboring areas, previously fished

areas, or throughout the relevant subarea (Figs 4A, 4C, 4E and 7). However, the fishery itself

can be impacted by the way displaced fishing is redistributed. We projected increased catches

if fishing was distributed more regionally, but this benefit came with the increased costs of fish-

ing in areas of low krill density (Fig 3 and S1 File). For these reasons, we suspect that, although

broad redistribution of displaced fishing could mitigate novel risks from MPAs by avoiding

the concentration of effort in open areas, the utility of doing so is case-specific and dependent

upon the design of candidate MPAs. The fact that our Regional redistribution alternative

increased the costs of fishing (Fig 3) but was not considerably more beneficial to predators

(Figs 2, 4 and 5) suggests that CCAMLR can probably permit fishing vessels to self-sort among

open areas if the D1MPA, or an improved version of it, is eventually established.

In 2018, Argentina and Chile used the preliminary results of our work to update their offi-

cial proposal for an MPA in Planning Domain 1 [37, 68]. Their alacrity demonstrates the

urgent need for scientific advice and the significant value of modeling the potential outcomes

of protected areas in support of policy-making. Further, such urgency displays the critical

need for understanding both the ecological benefits of proposed MPAs and their potential

adverse consequences, especially regarding displaced fishing. We intend for our results to sup-

port continued dialogue on protected areas in the Southern Ocean, and our work is ongoing.

Further management implications for CCAMLR. Rationalizing MPAs with other tools

of fishery management is an active topic of discussion (e.g., [23, 69]). We envision
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harmonizing customary krill-fishery management with MPAs by plugging the latter into the

former. CCAMLR has a two-pronged strategy for managing the krill fishery: limiting (1) over-

all catch––primarily to conserve the krill stock, and (2) the spatial distribution of catches––pri-

marily to conserve krill-dependent predators. If baseline risks posed by the overall catch limit

and the current catch distribution are acceptable, and an MPA (with its accompanying dis-

placement) does not exacerbate these risks for krill predators, that MPA might effectively sub-

stitute as the second element of CCAMLR’s management strategy. We argue our results

indicate that such a substitution is feasible because our projected implementation of the

D1MPA scenario exhibited demonstrable benefits for some predator populations, especially

penguins (Fig 4). For seals, comparing results from both scenarios suggested revisions to the

D1MPA that may reduce the potential for declines, which appeared in model results, namely,

by more effective protection of seal-foraging areas. We also showed that additional limitations

on the spatial distribution of fishing outside the D1MPA may be unnecessary if predator forag-

ing is effectively protected (e.g. Figs 4 and 7). Thus, in our opinion, and given that the present

goal of CCAMLR’s spatially explicit catch limits is to manage risks to predator populations, a

well-designed MPA can potentially maintain acceptable risks to krill-dependent predators and

substitute for other ways of spatially distributing krill catches (e.g., substitute for the spatial dis-

tributions considered by Watters et al. [45]). Of course, there are reasons to impose spatial

catch limits other than the protection of krill-dependent predators, and should CCAMLR

adopt a substantially different MPA in Planning Domain 1, further assessment may be

required.

If CCAMLR decides to implement a suitably revised version of the D1MPA scenario and

integrate the MPA with its management strategy for the krill fishery, the Commission could

achieve multiple objectives simultaneously. The Delegations of Argentina and Chile proposed

an MPA that aims to accomplish a broad suite of protection and conservation objectives [37,

53, 54, 68]. These objectives extend beyond conservation of krill-dependent predators, though

some are linked to krill fishing. For example, the D1MPA aims to protect other species of krill

and juvenile finfishes that are bycaught in the krill fishery. Other objectives of the D1MPA do

not clearly link to krill fishing but aim to protect animals and habitats that occur in areas

where the fishery operates, e.g., benthic communities. Thus, the closed areas comprising the

D1MPA scenario encompass more than the foraging habitats of krill-dependent predators [53,

54]. Our model cannot test whether all of the objectives for the D1MPA are achievable, but

CCAMLR’s Scientific Committee recognizes that “priority areas for conservation” occurring

within the proposed MPA boundaries are justified by the available data [70]. Our model can

test whether displacing krill fishing to achieve objectives unrelated to krill-dependent preda-

tors jeopardizes the achievement of related objectives. If CCAMLR adopts revisions to the

D1MPA as proposed by the Delegations of Argentina and Chile in 2018 [68] to reduce the

effects of displaced fishing on seals in the southwestern Drake Passage and penguins near the

western South Orkney Islands, we expect the protected area can indeed satisfy a broad range

of objectives. The potential utility of the D1MPA for achieving the various conservation objec-

tives identified by Argentina and Chile is further supported by Dahood et al. [71], a compara-

tive modeling study.

Insight for MPA development more broadly. Our modeled outcomes have implications

for CCAMLR and the Southern Ocean, but what we learned provides insight for MPA devel-

opment broadly as well. First, our results indicate that MPA design may significantly impact

ecological outcomes, in our case, for krill-dependent predators. If a management objective is

to protect predator populations, then an effective MPA can ensure predator abundance is

largely unaffected by fishing displaced outside the MPA, and minimally impacted by large

catches of the common prey resource. Our work indicates this effectiveness is achieved when
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at least 50–75% of predator foraging areas are closed to fishing within an MPA (Fig 7). When

this level of protection is achieved, predators are buffered against decisions made about the

distribution of fishing activity in open areas. Equally important, if an MPA does not suffi-

ciently protect important foraging areas, redistributed fishing can increase competition in

open areas where predators continue to forage, potentially causing their populations to

decline.

Our findings also indicate that benefits to predators do not necessarily come at the cost of

adverse effects on the fishery. High catches are possible even as predator populations increase

when an MPA displaces fishing from foraging areas (Figs 3, 6 and 7). This outcome suggests

that effective protected areas can be designed to result in weaker trade-offs for people. In fact,

the redistribution of displaced fishing to specific locations may permit greater resource use by

both fishers and predators (Figs 3, 6 and S1 File).

Potential catches may nevertheless depend on how fisheries respond to closed areas. Total

catches may increase if displaced effort is widely redistributed as in our modeled Regional

redistribution alternative, as opposed to redistribution locally or to areas where fishing effort is

already concentrated (Fig 3). However, this effect may differ at smaller spatial scales (Fig 6)

and be skewed by displacement from areas with high current effort (e.g. SSMU 5 in Fig 6 and

S1 File). Further, projected increased catch may not manifest in reality if the fishery is shifted

away from its current or preferred grounds to potentially less desirable areas.

Greater catches outside MPAs may come with other costs. We found that the overall proba-

bility of fishing in economically less desirable areas (i.e., threshold violations) increased in all

MPA scenarios (Fig 3). As we did not model fleet dynamics, a threshold violation should be

interpreted as the need for fishing vessels to move on due to low krill densities. This outcome

is not surprising, given that an MPA in our model forces fishing to concentrate in smaller

areas within an SSMU; this condition could increase the potential to deplete local krill

resources and increase the probability of threshold violations. Moreover and to varying

degrees, all redistribution alternatives increased catches in pelagic areas where krill densities

are lower and the potential for threshold violations are higher (Fig 6 and S1 File). Regardless,

this outcome underscores the need to balance improved yields against the depletion of local

krill stocks, and the resulting potential for the fleet to move to or focus on other grounds,

which can incur additional costs not modeled here (e.g. fuel, time, safety at sea). Thus, our

work exemplifies the fact that possible consequences of protected areas for people are complex

and extend beyond total catch alone.

Finally, differences between results aggregated over the entire modeled arena (Figs 2 and 3)

and those at the SSMU scale (Figs 4–6) indicate the importance of assessing outcomes in a spa-

tially explicit way. Outcomes at the scale of the model arena effectively masked important

impacts of the MPAs at smaller spatial scales. This is especially pertinent given the potential

for overlap with human use [38, 39] and the consequences of climate change [42] at finer spa-

tial scales. Overall changes in species abundance may not signal local declines in areas more vul-

nerable to the effects of climate change [42]. Increases in total catch may also obscure spatial

changes in fishing that could have substantial consequences for the fishery, e.g., because of safety

risks, fuel and travel costs, or by forcing vessels onto less desirable fishing grounds due to the

quantity or quality of the target species. The important point for management is to consider

exploring when and if outcomes change with spatial scale, and to use that to address whether

current schemes are appropriate. Here, we show there is potential for the current spatial scale of

Subareas to mask outcomes and, possibly, important costs to the ecosystem and the fishery.

All of these outcomes provide specific guidance for MPA implementation aimed at con-

serving krill-dependent predators while maintaining a productive fishery in the Southern

Ocean. They also hold insight for design of MPAs with similar goals more broadly. While
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delineating human use and species foraging on a common food resource may be intuitive for

MPA success, here we highlight this importance. However, we also show that the potential

negative consequences of increased effort from displaced human use can be avoided and that

MPAs can supply benefits to people and predators, but that these outcomes will depend on

how people respond to management action and may need to be balanced against other trade-

offs and costs for resource users.

Important caveats to our work

Most modeling comes with particular caveats. Previous studies (e.g., [42, 44, 45, 72]) describe

many of the caveats in our work, including the representation of predators as aggregate groups,

and the possibility that alternative functional relationships might better describe ecosystem

dynamics in the Scotia Sea. Here, we add to the list of caveats that should be considered. To

decompose our model’s reference parameterizations, we assumed random distributions of

catches and krill densities throughout each SSMU (S1 File). The outcomes of our model may

differ if catches and krill were not randomly distributed within SSMUs. For example, larger

catches in a potential closed area where krill density is high imply greater fishery displacement,

with consequently higher costs in open areas and lower risks for krill-dependent predators

continuing to forage in the closed area. Indeed, catches and krill are heterogeneous in space,

and substantial interannual variations have been documented in locations with the highest

krill catches and densities (e.g., [66, 73], respectively). Dealing with such variability is impor-

tant, but also implies a level of realism that is inconsistent with our simple hypotheses about

krill movement and aggregated predator groups; that is, realism that is inconsistent with the

current reference parameterizations of our model. In addition, we found the overlap of fishing

and foraging to be critical, but these conclusions, as with any from models, are based on the

reliability and accuracy of the data used. Fishery data published by CCAMLR is considered

reliable, our other inputs and model structure have been vetted by previous peer review (e.g.

[49, 50]), and here updates from tracking are based on recent surveys, but certainly new data

may impact modeled results. Similarly, a final caveat is that the parameterizations used herein

could be updated by re-tuning the model to data that have become available since publication

of Watters et al. [45].

Conclusion

When implementing an MPA like the D1MPA, tradeoffs must be considered to manage the

costs of displaced fishing and mitigate the risks to predators that depend on the resource tar-

geted by the fishery. Our results show that simply adjusting the size of closed areas to better

encompass predator foraging may slow or halt the depletion of krill-dependent predators no

matter how fishing effort redistributes in space. Our projections further indicate that these

outcomes would have little impact on fishery catches, however the required shifts in fishing

area may prove costly for people if vessels are displaced to less desirable locations where search

costs may be higher, fishing conditions more dangerous, and krill quality is less desirable or

inferior. We were unable to assess all of these fishery tradeoffs based on our model criteria. Yet

they and other social tradeoffs form the crux of many broad debates about MPAs (e.g., [18, 19,

31]), which are best resolved in participatory processes that consider a range of perspectives

and views [74, 75]. We previously asserted that it is fallacious to design an MPA to minimize

the ecosystem effects of displaced fishing without assessing the social costs of closing critical

fishing grounds. It is also fallacious to design MPAs that minimize displacement costs (i.e. by

closing very small areas) or exacerbate both ecosystem effects and fishery costs (i.e. by closing

previously unfished areas). In the Scotia Sea, such solutions are potentially pathological.
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Furthermore, they fail to recognize legitimate alternative perspectives and views held by vari-

ous CCAMLR Members.

Fortunately, CCAMLR’s process for establishing MPAs is participatory. There are many

opportunities to assimilate alternative perspectives into the design of the D1MPA. The Delega-

tions of Argentina and Chile developed their initial (submitted in 2017) and revised (submitted

in 2018) proposals over several years of consultation and collaboration with many colleagues,

stakeholders, and other national delegations [37]. These consultations and collaborations con-

tinue as the other delegations evaluate the proposal and provide feedback to its proponents.

Both the political decision to establish an MPA and its ultimate effectiveness often hinge on

stakeholders’ acceptance of the tradeoffs that emerge during its design and implementation

(e.g., [75] and references therein). Agardy et al. [74] asserted that “progressive MPA planning

not only focuses on ecological design but also how protected areas will affect environmental

and social outcomes,” but concluded that very few studies consider the detrimental ecosystem

effects and the costs of displaced fishing. We hope to buck this trend. In combination, the

efforts undertaken by the Delegations of Argentina and Chile to develop, propose, and revise

the D1MPA, by other delegations that continue to review and comment on the large volume

of research underpinning the proposal, and by our models that project the potential ramifica-

tions of the proposal, exemplify best practices in MPA planning (also [37]).

Collectively, our work and its connection to the CCAMLR process provide a case study that

can guide MPA development elsewhere. Our results provide insight for decision processes that

must balance ecological and human needs, particularly when both rely on the same or similar

resources or in “wasp-waist” ecosystems [76]. This is especially useful given the real concern of

increasing effort via the displacement of fishing from closed areas–and we show that this can

undermine MPA goals of protecting species if that increased effort overlaps with important

habitat and foraging grounds, thus aggravating competition instead of alleviating it. However,

we also show that successful MPAs can provide conservation and human benefits, although

the benefits for people need to be considered carefully. Finally, our work for CCAMLR also

emphasizes the value in assessing more than one MPA scenario to help improve proposed

designs, and the way in which work such as ours can fit into existing management structures.
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S4 Table. Proportional distributions of krill catch for each of the 15 SSMUs. Proportions used

in earlier versions of the model are under “Previous Model” (Table S1 in [5]). The updates used

here under “Current Model” are derived from catches taken during the 2009–2016 fishing seasons

and under limits at finer spatial scales specified by current management [6]. Both include the pro-

portional distribution of fishing across SSMUs (“Annual Distribution”), and how this proportion

was distributed seasonally within each SSMU (“Seasonal Distribution”). Thus, annual distribution

sums to one by column, seasonal distribution by row (“Summer” + “Winter”).

(DOCX)

S1 Fig. Schematic of the decomposition process. An arbitrary modeled marine area (A) is

shown divided in its original spatial units. Table B denotes the proportional information used

to update appropriate parameters and state variables for revising the spatial units. Decomposi-

tion creates updated spatial units (C) for the modeled marine area. Labels in (C) denote the

new spatial units, based on original names, percentage of foraging, and whether or not the unit

is open to fishing.

(TIF)

S2 Fig. Comparing output from the decomposed model with that of the original. Compari-

son of original model output (darker colors, solid lines) with that from a simple decomposed

model (lighter colors, dashed lines) for abundance (A) and recruitment (B), using the parame-

terization of full krill movement as passive drifters and a linear relationship between krill pred-

ators and krill availability (note that both outputs completely overlap).

(TIF)

S3 Fig. Outcomes for whales by SSMU in both MPA scenarios. Changes in whale abundance

with an MPA relative to the No MPA reference (i.e. MPA/No MPA), with the top row (A and

B) the Regional redistribution of displaced catch, the middle row (C, D) the Local alternative,

and bottom row (E, F) the Current alternative. The left column illustrates results from the

D1MPA scenario (A, C, E) and the right from US10 (B, D, F). Grey indicates areas where the

species group is not modeled to recruit. Note that changes are relative to the no MPA scenario

within each SSMU, not to overall change.

(TIF)

S4 Fig. Outcomes of both MPA scenarios for fish by SSMU. Change in fish abundance with

the MPA relative to the No MPA scenario (i.e. MPA/No MPA); all details as in S3 Fig.

(TIF)

S5 Fig. Difference in catch and allocation under an MPA scenario by SSMU. (A) Catch in

the final year of the No MPA model (x-axis) is compared with the final catch with an MPA (y-

axis); (B) the relative difference between the MPA and No MPA (MPA/No MPA) is considered

for the final catch against the allocation, i.e. the relative difference between an MPA scenario

and the No MPA reference in catch allocation (x-axis) versus realized catch (y-axis). In both

graphs, the MPA scenario is designated by marker shape (circles for D1MPA, triangles for

US10), and the redistribution method is indicated by the color (Regional is in blue, Local in

green, and Current in orange). The dashed grey line in (A) indicates that catch would be the

same with or without an MPA, with points below where catch declined with the MPA, and

points above where catch increased. In (B), this line indicates where the relative difference

between the No MPA and MPA scenarios is the same for the initial allocation and the final

realized catch, with points below meaning catch was lower than anticipated given the alloca-

tion, and points about denoting catch as higher than anticipated. SSMU 5 is indicated in both

PLOS ONE Marine protected areas and displaced fishing in the Scotia Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0237425 August 12, 2020 19 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0237425.s010
https://doi.org/10.1371/journal.pone.0237425


(A) and (B) with an asterisk (�).

(TIF)

S6 Fig. Probability of a threshold violation with and without an MPA by SSMU. The proba-

bility of a threshold violation in the No MPA scenario (x-axis) is compared with that probabil-

ity in an MPA scenario (y-axis). The MPA scenario is designated by marker shape (circles for

D1MPA, triangles for US10), and redistribution method is indicated by color (Regional in

blue, Local in green, and Current in orange). The dashed grey line indicates where the proba-

bility would be the same with or without an MPA. Points above indicate where the probability

of a threshold violation is higher with an MPA. Groups of points (i.e. for both MPA scenarios

and all redistribution alternatives) denoting offshore SSMUs are circled in black.

(TIF)

S1 Dataset. Update energy parameter, pk,i j,s, in the ecosystem model. Values for the

proportion of krill-derived energy that predators breeding in SSMU i obtain from SSMU j,
pk,i . j,s, decomposed to the open and closed areas of the original SSMU.

(XLSX)

S2 Dataset. Update to instantaneous rate of krill movement. Values for the parameter vi!j,s,

instantaneous rates of krill movement from area i to area j in the ecosystem model, decom-

posed from original SSMUs to the open and closed areas within each SSMU.

(XLSX)
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47. Plagányi ÉE, Punt AE, Hillary R, Morello EB, Thébaud O, et al. Multispecies fisheries management and

conservation: tactical applications using models of intermediate complexity, Fish Fish 2014; 15(1): 1–

22.

48. R Core Team. R: A language and environment for statistical computing. Computing R Foundation for

Statistical Computing. Vienna Austria: 2017. http://www.R-project.org/

49. Hill SL, Matthews J. The sensitivity of multiple output statistics to input parameters in a krill–predator–

fishery ecosystem dynamics model, CCAMLR Sci. 2013; 20: 97–118.

50. Hill SL, Reid K, Thorpe SE, Hinke J, Watters GM. A compilation of parameters for ecosystem dynamics

models of the Scotia Sea-Antarctic Peninsula region, CCAMLR Sci. 2007; 14: 1–25.

51. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Conservation Mea-

sure 51–01. Precautionary catch limitations on Euphausia superba in Statistical Subareas 48.1, 48.2,

48.3 and 48.4. 2010. Available from https://www.ccamlr.org/en/measure-51-01-2010.

52. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Statistical Bulletin.

2018. Report No.: 29. Available from https://www.ccamlr.org/en/meetings/26.

53. Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminar Proposal PART A-1:

Priority Areas for Conservation. 2017. Report No.: SC-CAMLR-XXXVI/17. https://www.ccamlr.org/en/

sc-camlr-xxxvi/17

54. Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminar Proposal PART A-2:

MPA Model. 2017. Report No.: SC-CAMLR-XXXVI/18.

55. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Report of the 36th

Meeting of the Commission. 2017. Report No.: CCAMLR-XXXVI.

56. Watters GM. Report of a domestic workshop to identify U.S. stakeholders’ objectives and protection pri-

orities for one or more marine protected areas in Planning Domain 1. 2015. Report No.: WG-EMM-15/

34.

57. Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Conservation Mea-

sure 91–03, Protection of the South Orkney Islands southern shelf. 2009. Available at: https://www.

ccamlr.org/en/measure-91-03-2009.

58. Johnson D, London J, Lea M-A, Durban J. Continuous-time correlated random walk model for animal

telemetry data. Ecology. 2008; 89: 1208–1215. https://doi.org/10.1890/07-1032.1 PMID: 18543615

59. Wilcox C, Pomeroy C. Do commercial fishers aggregate around marine reserves? Evidence from Big

Creek Marine Ecological Reserve, central California. N Am J Fish Manag. 2003; 23(1): 241–250.

60. Kellner JB, Tetreault I, Gaines SD, Nisbet RM. Fishing the line near marine reserves in single and multi-

species fisheries. Ecol App. 2007; 17(4): 1039–1054. https://doi.org/10.1890/05-1845 PMID: 17555217

61. Hutton T, Mardle S, Pascoe S, Clark RA. Modelling fishing location choice within mixed fisheries:

English North Sea beam trawlers in 2000 and 2001. ICES J Mar Sci. 2004; 61(8): 1443–1452. https://

doi.org/10.1016/j.icesjms.2004.08.016

62. Jennings S. The role of marine protected areas in environmental management. ICES J Mar Sci. 2009;

66(1): 16–21. https://doi.org/10.1093/icesjms/fsn163
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